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Abstract

Topological properties of bulk and edge states in honeycomb lattice photonic crystals are
investigated theoretically for transverse-electric (TE) polarization. Breaking of space-inversion
and time-reversal symmetries is considered at optical frequencies. The bulk band structure
exhibits a topological phase transition by changing the degree of the broken symmetries. The
resulting phase diagram correlates with zigzag and armchair edge states, and the so-called
bulk—edge correspondence is verified. The effects of flat interfaces near the edges are also

discussed.

1. Introduction

In the last few decades, artificial photonic materials have
attracted much interest for realizing ultra-compact photonic
integrated circuits [1] where active and passive photonic
elements must be loaded in a controllable manner. Among
them, non-reciprocal elements are important for flow control
of light [2]. They can work in optical isolators and circulators.
Traditional designs of a non-reciprocal element often employ
the Faraday geometry and lack compactness. Recently, several
researchers have demonstrated that non-reciprocal and one-
way light waveguides can be realized, in a completely different
design, by using certain magnetic photonic crystals (PhCs)
under Voigt geometry [3—8]. Such waveguides can be compact
and their usage in photonic integrated circuits is promising. We
should also note that light transport in one-way waveguides
is generally robust against disorder. The robustness is
quite favourable for actual fabrication of waveguides, which
inevitably includes disorder.

The robustness in the one-way transport is closely related
to topological properties of eigenstates in the host medium
around the waveguide. If the counter-propagating waveguide
modes and bulk modes are absent in the frequency range
concerned, the backscattering in the waveguide and the
scattering into bulk are prohibited. Such a situation appears
most typically in the sample edge of quantum Hall systems,
where the drift motion of electrons along the sample edge
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forms chiral edge states of electrons. In this system, a
topological relation between bulk and edge, which is called the
bulk—edge correspondence, holds [9]. Roughly speaking, this
theorem tells us that if bulk electronic states are topologically
nontrivial, then edge electronic states can be chiral (one-way).
The nontrivial topology of bulk electronic states is measured
with the Chern number of Bloch band and results in nonzero
quantized Hall conductance [10].

Recently, the author and his collaborator have argued the
validity of the bulk—edge correspondence in photonic systems,
within the context of the topological phase transition [11].
However, the system studied in the work is still restrictive
and further investigation on the validity is necessary. In this
paper, we investigate the bulk—edge correspondence and the
topological phase transition in a different system of different
polarization, where more nontrivial photonic band structure
emerges in visible frequency ranges. Since the rigorous proof
of the bulk—edge correspondence is still lacking in photonic
systems, we need more evidences to establish this statement.
Moreover, we need to know to what extent photonic systems
are different from electronic ones from the viewpoint of
topology. To do so, considering extreme cases that show clear
contrast to electronic systems is effective. The aim of this
paper is to demonstrate that the bulk—edge correspondence is
certainly satisfied even if the vector-like nature of light and the
flat interfaces near PhC edges are taken into account.

© 2010 IOP Publishing Ltd  Printed in the UK & the USA
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2. Bulk states

Suppose that a photonic crystal consists of a two-dimensional
(2d) honeycomb array of two types of circular cylinders (called
A and B) embedded in a magneto-optical substance. If A is
different from B, then the space-inversion symmetry (SIS) is
broken [12, 13]. Moreover, if a static magnetic field is applied
parallel to the cylindrical axis, the time-reversal symmetry
(TRS) is broken. These two broken symmetries can cause
a topological phase transition. In the transverse-magnetic
(TM) polarization, photonic systems are more or less similar
to electronic systems which satisfy the scalar Schrodinger
equation. In addition, in the gigahertz frequency range, a
large magneto-optical effect is available. Thus, a simple
analogy to quantum Hall systems can be drawn for the TM
polarization [5]. In contrast, the vectorial nature stands out
in the transverse-electric (TE) polarization, and the magneto-
optical effect via a permittivity tensor is generally small in
the visible frequency range. We thus have a completely
different system, far from the quantum Hall system, in the
TE polarization. Therefore, it is important to clarify how the
topological phase transition and chiral edge states appear in the
TE polarization.

To be specific, let us assume the dielectric constant of
the cylinders ¢; (i = A, B) is high (~12). The radius of
the cylinders is fixed as r; = 0.2a, where a is the lattice
constant. We further employ the free-electron metal model
for the magneto-optical substance. Under a static magnetic
field parallel to the cylindrical axis (the z axis), the permittivity
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where @, and . are plasma and cyclotron frequencies,
respectively, T is the relaxation time, and €., is the scalar
permittivity at @ — oo. The permeability tensor is taken to
be unity throughout the PhC.

The photonic band structure of the TE polarization is
shown in figure 1 for the PhC with both SIS and TRS. The
band structure is calculated with the photonic Korringa—Kohn—
Rostoker method [14, 15]. Here, we assume wpa/(27c) = 1
and consider optical frequencies, because w, takes a value
from visible to ultraviolet. The physical origin of the rather
flat photonic bands in figure 1 is the coupling among the
localized states of the isolated cylinders. In the frequency range
of interest, the diagonal permittivity €, is negative, and the
off-diagonal component «,, is set to be zero. Therefore, the
free-electron metal screens the electro-magnetic field. As a

0'16F M K r

Figure 1. The photonic band structure of the TE polarization for the
honeycomb lattice of dielectric cylinders embedded in a free-electron
metal. The radius and the dielectric constant of the cylinders are
taken to be 0.2a and 12, respectively, where a is the lattice constant.
The following parameters are assumed for the free-electron metal:
€ =1, wpa/2rc) =1, andw. = 77! = 0.

consequence, bound modes localized in the isolated cylinder
emerge with real eigenfrequencies. The eigenfrequencies of
the localized states are determined by
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A sequence of solutions is found at wa /(2w c) = 0.1869 (I =
+1), 0.2383 (I = £2), 0.2577 (I = £3), 0.2659 (I = £4),
0.2670 (I = +5), and so on, at w, = ! = 0, where [
is the angular momentum. The mode of / = 0 is not found
in the frequency range of interest. The interaction among
nearby cylinders results in the frequency dispersion in the band
diagram. Thus, this system has a close resemblance to the
tight-binding model based on atomic orbitals.

Taking into account that there are two rods per unit cell,
and that the bound modes are degenerate between / and —I,
the lowest four bands are composed mainly of the multi-pole
components of / = =£1. It is remarkable that these four bands
are disconnected from other higher bands, but are connected
within themselves at I', K, and K. Moreover, we can see
clearly a band touching with linear dispersion at K (and K’)
between the second and the third bands. This so-called Dirac
cone [16] can appear in triangular-like PhCs, and is a source of
peculiar light-transport phenomena [17-20]. The degeneracy
at I is lifted by the TRS breaking, whereas it is not lifted by the
SIS breaking. On the other hand, the degeneracy at K is lifted
both by the TRS breaking and by the SIS breaking. As a result,
by applying a static magnetic field parallel to the cylindrical
axis, which breaks the TRS, the four bands separate among
other. Besides, by introducing a difference between A and B
cylinders, which breaks the SIS, a gap opens in the Dirac cone,
while the bands are still connected at I".
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As for the TM polarization, the bottom of the photonic
bands is at about wa/2mc¢ = 0.3. Therefore, in the
frequency range of interest no TM photonic band exists. As
a consequence, the possible photonic band gaps between the
lowest four TE bands are not affected by small perturbations
which mix the TE and the TM polarizations. Such
perturbations include the disorder that breaks the translational
invariance in the z direction, the anisotropy in the permittivity
and/or the permeability tensors that mix in-plane (x and y) and
out-of-plane (z) components, and the bi-isotropy [21].

In what follows, we consider the parameter space spanned
by two symmetry-breaking parameters. One is €5 — €g, which
describes the SIS breaking, and the other is w., which describes
the TRS breaking. The phase diagram regarding the Chern
numbers of the four bands is shown in figure 2. Here, the Chern
number of the nth band is defined by

1
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27 Jaz
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= dx proul () V kit nr (), )
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where u,(x) is the envelope function of the z-component
of the magnetic field H, for the nth Bloch mode at Bloch
momentum k, and is normalized as (mk|nk) = §,,,. The
symbol Vj, stands for the gradient operator with respect to k.
There are six different phases each of which is bounded by the
gap-closing curves. The gap-closing curve of I' corresponds to
w. = 0, where the TRS is preserved. The Chern numbers
of adjacent bands transfer on the curves as we change the
parameters across the curves. This gives rise to the topological
phase transition. This phase diagram is similar to that obtained
before in [11, 22]. However, owing to the additional gap
closing at I, the phase diagram becomes complicated.

The bulk—edge correspondence tells us that for a given
gap, the sum of the Chern numbers of the Bloch bands below
the gap is equal to the number of the chiral edge states in
the gap. If the sum is negative, the chirality of the relevant
edge states is inverted. According to this statement, in the
upper right region with (Cy, Cy, C3, Cy4) = (—1, 1, —1, 1), for
instance, chiral edge states will appear in the gap between the
first and the second bands (gap 1) and the gap between the third
and the fourth bands (gap III). The sum of the Chern numbers
over the first and the second bands is zero, suggesting no chiral
edge state appears in the gap between the second and the third
bands (gap II). We can see this is just the case.

3. Edge states

Next, we consider edge states (or in other words, surface states)
for a stripe geometry with a finite number (N) of layers of
the honeycomb lattice PhC with two parallel edges, upper and
lower ones. To characterize the edge states, we assume zigzag
and armchair edges with two kinds of geometry, either the
presence or absence of an interface near the edge. In the PhC
under consideration, the background medium is not empty.
Therefore, the PhC edge is defined by fixing the distance d
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Figure 2. The phase diagram regarding the Chern numbers C, of the
lowest four bands. The Chern numbers are written in the format of
(Cy, C3, C3, Cy). The diagram is spanned by two parameters,

€x — €p and ., while the other parameters of the PhC as well as the
average (€ + €p)/2 are kept fixed. The thick lines are the
gap-closing curves of I', K, and K'.

between the boundary column of the dielectric cylinders and
the flat interface between the background medium and air.
We consider two extreme cases, d — 00 and d = diayer/2,
where djye; 1s the interlayer distance between two adjacent
mono-layers. For the zigzag stripe, djayer = V3a/2, whereas
diayer = a /2 for the armchair stripe. The stripe width is equal to
Ndyayer. If d — 00, the edge states are screened irrespective of
Bloch momentum. In contrast, if d = diayer/2, the edge states
are strongly influenced by the interface, and the light cone must
be taken into account. Please refer to [11] for the calculation
method employed in this paper.

3.1. Without an interface

Let us first consider the case of d — oo. Figure 3 shows the
projected band diagram and the dispersion curves of the edge
states relevant to the zigzag edge at four representative points
in the phase diagram (figure 2).

In this projection the K and K’ points are mapped onto
kya/2wr = —1/3 and 1/3, respectively, where k| stands for
the Bloch momentum parallel to the edge. The band touching
there for P; is due to the Dirac cone. For P; and P;, the
TRS is preserved, while the TRS is broken and nonzero Chern
numbers are obtained for P, and P;. We can see gap III is
incomplete, whereas gap I and gap II can be complete (2d-
omni-directional).

The dispersion curves of the edge states change their
characteristics in accordance with the phase diagram. For P,
all the curves are almost degenerate except around the Dirac
point kya /2w = +1/3. The lifting of the degeneracy around
the Dirac point is a finite-size effect, so that the complete
degeneracy is obtained at N — oo irrespective of k. For
Ps it is still on the phase boundary and the degeneracy of
the edge states in gap II is lifted. Notable features appear
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Figure 3. The projected band diagram and the dispersion curves of -1 0 1
the edge states relevant to the zigzag edge at four representative xa

points (P,) in the phase diagram (figure 2). The shaded regions
correspond to the bulk modes, otherwise the (pseudo) gap. The
coloured curves represent the dispersion relation of the edge states.
Red (blue) curves stand for localization in the upper (lower) edge of
the PhC stripe. The violet curve represents localization in both the
edges because of (approximate) degeneracy. The number of layers
forming the zigzag PhC stripe is 16.

for P, and P4, where some of the bands have nonzero Chern
numbers. For P, all the edge states are gap-less, that is,
the dispersion curve traverses the gap between the nearby
bands. Moreover, the edge states become chiral in the 2d-
omni-directional gap region of gap I and gap II. Namely, the
upper (lower) edge states, represented by red (blue) curves,
have positive (negative) group velocities there and the counter-
propagating mode with negative (positive) group velocity is
absent within the upper (lower) edge. As a consequence, the
dispersion curves of the upper and lower edge states cross each
other at a particular point of k. For P, the dispersion curves
of the edge states in gap II do not cross each other, whereas
the other curves in gap I and gap III cross. All of the above
properties are consistent with the bulk—edge correspondence.
The rather flat dispersion curves in gap II of P; and Ps
are reminiscent of the flat-band edge states in zigzag graphene
ribbons [23, 24]. To compare our system with graphene, let
us consider the field configuration of the edge state. The
magnetic field strength of the edge state at the marked point
(kja/2r = 0.1) of P; in figure 3 is shown in figure 4.
Point P lies on the phase boundary and can be obtained by
a small perturbation from P;, where the Dirac cone is obtained
as in graphene. The field strength is strongly localized in
the boundary row of the A cylinders, whereas non-negligible
contributions are found in the nearby rows of the B and A
cylinders. We should emphasize that the edge states under
consideration exist only if |kjla/2m < 1/3. In contrast, the
flat-band edge states of graphene exist only if |k|a /27 > 1/3.
The edge states with |kjla/27 < 1/3 are found also in the
photonic analogue of graphene composed of metallic spherical
particles [25]. Therefore, these features highlight a contrast
between electronic and photonic systems. We also note that
the field configuration inside the boundary A cylinders exhibits

Figure 4. The magnetic field strength | H. |? of the edge state at the
marked point of P; in figure 3. The maximum field strength is
normalized to be one. Red and green circles stand for the boundary
of A and B cylinders, respectively, and the white line stands for the
boundary of a unit cell.
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Figure 5. The projected band diagram and the dispersion curves of
the edge states relevant to the armchair edge at four representative
points in the phase diagram (figure 2). The number of layers forming
the armchair PhC stripe is 16.

a p-wave-like behaviour, in agreement with the statement that
the lowest four bulk bands are mainly composed of the p-wave
(I ==1).

Figure 5 shows the projected band diagram and the edge
states’ dispersion curves relevant to the armchair edge. In this
projection I, K, and K’ points are mapped onto the same point
of kya/2m = 0, and gap IIT is not visible. Thus, the bulk—edge
correspondence is hidden there. The edge states in gap I and
gap II exhibit a similar tendency as in the zigzag PhC stripe.
That is, only if the relevant Chern numbers are nonzero as in
P> and Py, the dispersion curve of the edge states traverses
the gap and the two curves (red and blue) cross each other at
kya/2mw = 0 or £0.5. Moreover, the edge states become chiral
in the 2d omni-directional gap.
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Figure 6. The projected band diagram and the dispersion curves of the edge states relevant to the armchair edges with flat interfaces at
d = dyayer/2. Thick black lines stand for the light line. The number of layers is taken to be 64. The right panel is an enlarged figure around the

green circle in the left panel.

3.2. With an interface

Next, we consider the effects of flat interfaces near the PhC

edges. In the metallic background the flat interface alone

supports the surface plasmon polariton (SPP) mode whose

dispersion relation is given by the following equation,
Emkm + Olmkll _

ko + ——— =0,
2 _ 2
6I’I’l am

2 2 2,2
/ w € o2 w
— 2 — 2 m m
Ko = k“——z, K = k“—i—z.
c €, C

In the frequency range of interest, the dispersion curve of the
SPP is close to the light line @ = c|k|. The SPP mode does not
have a nonzero cutoff frequency. In the stripe geometry with
two flat interfaces, two SPP modes emerge. Besides, rather flat
photonic band modes exist in bulk as shown in figure 1. The
bulk and the two SPP modes mix strongly near the light line,
forming ‘meta-polaritonic’ bands. In addition, the interfaces
induce the coupling with the external radiation modes. As a
consequence, the edge states are categorized into leaky and
guided states, depending on whether they are inside or outside
the light cone. The dispersion curve of the leaky edge states
has a finite line width determined by the imaginary parts of
the eigenfrequencies. Therefore, we must take account of
this allowance in the bulk—edge correspondence. The leakage
is inherent in photonic systems, because the air outside the
photonic systems is not ‘insulating’.

Figure 6 shows the projected band diagram and the
dispersion curve of the edge states relevant to the armchair
edges with the flat interfaces. The number of layers in the PhC
stripe is increased to N = 64. The presence of the interface
changes the dispersion curve from that in figure 5. For instance,

(10)

1D

we can find additional curves in gap Il around wa /2w ¢ = 0.18
and in the region just below the first band. However, we
can still find a common feature in the dispersion curves. A
remarkable difference of the dispersion curves between P, and
P, is found in gap II. For P,, the dispersion curve of the edge
states does traverse the gap. However, that for P4 does not.
Therefore, chiral edge states are realized in gap II solely for
P>. As for gap I, chiral edge states emerge for both P, and
P4. All of these properties are consistent with the bulk—edge
correspondence. It should be noted that the gap traverse is
not obvious at small N (~16), because the line width of the
relevant edge states is not small enough.

If we closely look at the dispersion curves near the light
cone, anti-crossing of the curves takes place. This is due to
the mixing of the SPP modes and edge modes of PhC origin.
The mixing results in ‘meta-polaritons’. In the right panel of
figure 6, the upper ‘meta-polariton’ (red curve) is almost a pure
edge state at kja /2w = 0.185, but becomes SPP-like near the
light line. Eventually, it merges with the bulk band. The middle
and lower ‘meta-polaritons’ (blue and red curves, respectively)
become SPP-like near the light line. These two lines are hidden
in the left panel and are almost degenerate with the light line.
Since there are always two light lines w = ckj and —ckj,
propagating and counter-propagating modes coexist at a given
frequency. Thus, we may neglect their effect in the bulk—
edge correspondence. Nevertheless, we should remember their
presence, because they can readily mix with the edge modes of
PhC origin.

4. Conclusion

In summary, we have investigated topological properties of
bulk and edge states in honeycomb lattice PhCs for the TE
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polarization. The breaking of the TRS and the SIS results in
a rich phase diagram concerning the Chern numbers of Bloch
bands in bulk. The Chern numbers are well correlated with the
chirality of the edge states, and the bulk-edge correspondence
has been verified in the PhC stripes with and without the flat
interfaces. If the interfaces are absent, a similar but different
edge state to that in graphene ribbon emerges. If the interfaces
are present, the dispersion curves of the edge states have certain
line widths if they are inside the light cone. In addition, the
SPPs localized around the interfaces mix with the PhC edge
states, forming ‘meta-polaritons’ in the vicinity of the light
cone. These two features in the system with the interfaces show
a strong contrast between electronic and photonic systems, and
suggest novel functions inherent in light transport near the
edge.
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